Temperature-Responsive Nanoassemblies for Self-Regulated Photothermal Therapy and Controlled Copper Release to Accelerate Chronic Wound Healing.
Xiaojing WuGuizhen ZhaoYiling RuanKai FengMaoyu GaoYi LiuXiaolian SunPublished in: ACS applied bio materials (2023)
Photothermal therapy (PTT) is an effective therapeutic method against multidrug-resistant bacteria. The heating temperature is of great significance to completely eliminate bacteria but not damage surrounding healthy tissue. To meet the need for chronic wound management, a pH and temperature dual-responsive copper-gold nanoassembly (sCuAu NAs) was constructed by cross-linking the CuAu nanoparticles (CuAu NPs) with small molecules involved in the Edman degradation reaction. At room temperature, the sCuAu NAs could quickly heat up to eliminate the biofilm upon laser irradiation due to the surface plasmon resonance coupling effect. On arriving at the degradation temperature of around 50 °C, the sCuAu NAs are disassembled into CuAu NPs in the wound infection site, which not only prevents overheating but also promotes deep penetration and accelerates copper-ion release to remove residual bacteria and promote wound healing. This study not only provides an effective treatment that can simultaneously alleviate wound infection and accelerate wound healing but also brings up an idea on the development and application of temperature self-regulated photothermal agents in various diseases.