Estimating interactions and subgroup-specific treatment effects in meta-analysis without aggregation bias: A within-trial framework.
Peter J GodolphinIan R WhiteJayne F TierneyDavid J FisherPublished in: Research synthesis methods (2022)
Estimation of within-trial interactions in meta-analysis is crucial for reliable assessment of how treatment effects vary across participant subgroups. However, current methods have various limitations. Patients, clinicians and policy-makers need reliable estimates of treatment effects within specific covariate subgroups, on relative and absolute scales, in order to target treatments appropriately-which estimation of an interaction effect does not in itself provide. Also, the focus has been on covariates with only two subgroups, and may exclude relevant data if only a single subgroup is reported. Therefore, in this article we further develop the "within-trial" framework by providing practical methods to (1) estimate within-trial interactions across two or more subgroups; (2) estimate subgroup-specific ("floating") treatment effects that are compatible with the within-trial interactions and make maximum use of available data; and (3) clearly present this data using novel implementation of forest plots. We described the steps involved and apply the methods to two examples taken from previously published meta-analyses, and demonstrate a straightforward implementation in Stata based upon existing code for multivariate meta-analysis. We discuss how the within-trial framework and plots can be utilised with aggregate (or "published") source data, as well as with individual participant data, to effectively demonstrate how treatment effects differ across participant subgroups.