Login / Signup

Effects of Double-Ageing Heat Treatments on the Microstructure and Mechanical Behaviour of a Ti-3.5Al-5Mo-4V Alloy.

Xuanming JiPanpan GeSong XiangYuanbiao Tan
Published in: Materials (Basel, Switzerland) (2021)
In this work, the effect of double-ageing heat treatments on the microstructural evolution and mechanical behaviour of a metastable β-titanium Ti-3.5Al-5Mo-4V alloy is investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The double-ageing treatments are composed of low-temperature pre-ageing and high-temperature ageing, where the low-temperature pre-ageing is conducted at 300 °C or 350 °C for different times, and the high-temperature ageing is conducted at 500 °C for 8 h. The results show that the phase transformation sequence is altered with the time spent during the first ageing stage, the isothermal ω phase is precipitated in the pre-ageing process of the alloy at 300 °C and 350 °C with the change in the ageing time, and the ω phase is finally transformed into the α phase with the extension of pre-ageing time. The existence time of the ω phase is shortened as the pre-ageing temperature increases. The microhardness of the alloy increases with increasing pre-ageing time and temperature. Compared with single-stage ageing, the ω phase formed in the pre-ageing stage changes the response to subsequent high-temperature ageing. After the two-stage ageing treatment, the precipitation size of the α phase is obviously refined after the double-ageing treatment. A microhardness test shows that the microhardness of the two-stage aged alloy increases with extended pre-ageing time.
Keyphrases
  • electron microscopy
  • high temperature
  • high resolution
  • multiple sclerosis
  • computed tomography
  • magnetic resonance
  • amino acid