Login / Signup

High-intensity interval exercise reduces tolerance to a simulated haemorrhagic challenge in heat-stressed individuals.

Claire E TrotterErica TourulaFaith K PizzeyPhilip M BattersonRobert A JacobsAlex Sander da Rosa Araujo
Published in: Experimental physiology (2020)
This study investigated whether tolerance to a simulated haemorrhagic challenge (lower body negative pressure, LBNP) was lower in heat-stressed individuals following high-intensity interval exercise relative to steady state exercise. Nine healthy participants completed two trials (Steady State and Interval). Participants cycled continuously at ∼38% (Steady State) or alternating between 10 and ∼88% (Interval) of the maximal power output whilst wearing a hot water perfused suit until core temperatures increased ∼1.4°C. Participants then underwent LBNP to pre-syncope. LBNP tolerance was quantified as cumulative stress index (CSI; mmHg min). Mean skin and core temperatures were elevated in both trials following exercise prior to LBNP (to 38.1 ± 0.6°C and 38.3 ± 0.2°C, respectively, both P < 0.001 relative to baseline) but not different between trials (both P > 0.05). In the Interval trial, heart rate was greater (122 ± 12 beats min-1 ) prior to LBNP, relative to the Steady State trial (107 ± 8 beats min-1 , P < 0.001) while mean arterial pressure was similarly reduced in both trials prior to LBNP (from baseline 89 ± 5 to 77 ± 7 mmHg; P = 0.001) and at pre-syncope (to 62 ± 9 mmHg, P < 0.001). CSI was lower in the Interval trial (280 ± 194 vs. 550 ± 234 mmHg min; P = 0.0085). In heat-stressed individuals, tolerance to a simulated haemorrhagic challenge is reduced following high-intensity interval exercise relative to steady state exercise.
Keyphrases