Myocardial Contractility Pattern Characterization in Radiation-Induced Cardiotoxicity Using Magnetic Resonance Imaging: A Pilot Study with ContractiX.
El Sayed H IbrahimAntonio SosaSherry-Ann BrownDayeong AnSlade KlawikowskiJohn E BakerCarmen BergomPublished in: Tomography (Ann Arbor, Mich.) (2022)
Radiation therapy (RT) plays an integral role in treating thoracic cancers, despite the risk of radiation-induced cardiotoxicity. We hypothesize that our newly developed magnetic resonance imaging (MRI)-based contractility index (ContractiX) is a sensitive marker for early detection of RT-induced cardiotoxicity in a preclinical rat model of thoracic cancer RT. Adult salt-sensitive rats received image-guided heart RT and were imaged with MRI at 8 weeks and 10 weeks post-RT or sham. The MRI exam included cine and tagging sequences to measure left-ventricular ejection fraction (LVEF), mass, myocardial strain, and ContractiX. Furthermore, ventricular torsion, diastolic strain rate, and mechanical dyssynchrony were measured. Statistical analyses were performed between the sham, 8 weeks post-RT, and 10 weeks post-RT MRI parameters. The results showed that both LVEF and myocardial mass increased post-RT. Peak systolic strain and ContractiX significantly decreased post-RT, with a more relative reduction in ContractiX compared to strain. ContractiX showed an inverse nonlinear relationship with LVEF and continuously decreased with time post-RT. While early diastolic strain rate and mechanical dyssynchrony significantly changed post-RT, ventricular torsion changes were not significant post-RT. In conclusion, ContractiX measured via non-contrast MRI is a sensitive early marker for the detection of subclinical cardiac dysfunction post-RT, and it is superior to other MRI cardiac measures.
Keyphrases
- left ventricular
- magnetic resonance imaging
- contrast enhanced
- radiation induced
- heart failure
- radiation therapy
- aortic stenosis
- hypertrophic cardiomyopathy
- acute myocardial infarction
- ejection fraction
- cardiac resynchronization therapy
- computed tomography
- mitral valve
- diffusion weighted imaging
- magnetic resonance
- left atrial
- blood pressure
- spinal cord
- stem cells
- spinal cord injury
- oxidative stress
- gestational age
- bone marrow
- endothelial cells
- drug induced