Fundamental Invariant Neural Network (FI-NN) Potential Energy Surface for the OH + CH 3 OH Reaction with Analytical Forces.
Kaisheng SongJun LiPublished in: The journal of physical chemistry. A (2024)
The hydrogen abstraction reaction of OH + CH 3 OH plays a great role in combustion and atmospheric and interstellar chemistry and has been extensively studied theoretically and experimentally. Theoretically, the numerical gradients with respect to the Cartesian coordinates of atoms in molecular simulations on our recent potential energy surface (PES) for the title reaction trained using the permutationally invariant polynomial neural network (PIP-NN) approach hinder the extensive calculation because of the unaffordable computation cost. To address this issue, we in this work report a new full-dimensional accurate analytical PES for the title reaction using the fundamental invariant neural network (FI-NN) approach based on 140,192 points of the quality UCCSD(T)-F12a/AVTZ. Besides, the spin-orbit (SO) corrections of OH in the entrance channel were determined at the level of complete active space self-consistent field with the AVTZ basis set. As a compromise between computational cost and efficiency, the Δ-machine learning approach was employed to construct the SO-corrected PES. Based on this new FI-NN PES with analytical forces, thermal rate coefficients and various dynamic properties, including the integral cross sections, the differential cross sections, and the product energy partitioning, were determined by running a total of 5.5 million trajectories. The use of analytical gradients of the FI-NN PES accelerated simulations and about 99% of computation cost was saved, compared to that for the PIP-NN PES with numerical gradients. Such a significant acceleration is achieved mainly by replacing PIPs with FIs.