Cage Bismuth Metal-Organic Framework Materials Based on a Flexible Triazine-Polycarboxylic Acid: Subgram Synthesis, Application for Sensing, and White Light Tuning.
Zi-Xin YouYao XiaoQing-Lin GuanFeng Ying BaiFeng-Ying BaiFen XuPublished in: Inorganic chemistry (2022)
Bismuth-based metal-organic frameworks (MOFs) have always attracted the attention of many researchers. Here, we first report a crystalline Bi-MOF (Bi-TDPAT) based on a flexible triazine-polycarboxylic linker 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine (H 6 TDPAT) and bismuth nitrate; its crystallite quality is adequately good and the diffraction data can be collected directly by single crystal X-ray diffraction rather than 3D electron diffraction. The structure of Bi-TDPAT belongs to a novel topology type btt . Notably, the synthesis scale of Bi-TDPAT can be expanded, and sub-gram synthesis can be realized. At the same time, we synthesized a microcrystalline material Bi-TATAB utilizing 2,4,6-tris(4-carboxylphenylamino)-1,3,5-triazine (H 3 TATAB). The structures of the two materials were characterized by several microanalysis tools. Considering that Bi-TDPAT is a blue light-emitting material with a broad emission peak, we prepared a white light emitting composite material Eu/Tb@Bi-TDPAT by encapsulating Eu(III)/Tb(III) in Bi-TDPAT. In addition, the fluorescence sensing functions of Bi-TDPAT and Bi-TATAB were explored. The results showed that they could detect and recognize various nitrophenols, and the optimal limit of detection is as low as 0.21 μM, which can be reused even after five cycles. Energy competitive absorption (CA) and photo-induced electron transfer are the main sensing mechanisms. By comparing and analyzing the properties of these two bismuth-based crystalline materials, we believe that this work also provides inspiration for the synthesis and development of bismuth-based MOF in the future.