Login / Signup

Ultrafine Bi3TaO7 Nanodot-Decorated V, N Codoped TiO2 Nanoblocks for Visible-Light Photocatalytic Activity: Interfacial Effect and Mechanism Insight.

Chengzhang ZhuYuting WangZhifeng JiangAnnai LiuYu PuQiming XianWeixin ZouCheng Sun
Published in: ACS applied materials & interfaces (2019)
Bi3TaO7 is a potential photocatalyst because of its high chemical stability, defective fluorite-type structure, and superior mobility of photoinduced holes. However, few studies have focused on the interfacial effects of Bi3TaO7-based photocatalysts. In this work, 0D Bi3TaO7 nanodot-hybridized 3D V and N codoped TiO2 nanoblock (B/VNT) composites were first synthesized for the photocatalytic removal of oxytetracycline hydrochloride, 2,4,6-trichlorophenol, and tetrabromobisphenol A. The fabricated B/VNT had a photocatalytic performance superior to that of pristine components, and probable degradation pathways were proposed according to the primary intermediates identified by a gas chromatography-mass spectrometer. Interestingly, on B/VNT, the transfer of interfacial electrons was observed from V/N-TiO2 to Bi3TaO7, and the formed built-in electronic field led to a direct Z-scheme structure, rather than type II, as confirmed by the generated •OH and •O2- radicals and band structures from the density functional theory calculation. Therefore, the strong interfacial electronic interaction on the B/VNT was significant, which drove faster photogenerated charge transfer, more visible-light adsorption, and active •OH and •O2- generation, thus improving the photocatalytic activity.
Keyphrases