Login / Signup

Ultrafast Chemical Exchange Dynamics of Hydrogen Bonds Observed via Isonitrile Infrared Sensors: Implications for Biomolecular Studies.

Joachim KübelGiseong LeeSaik Ann OoiSebastian WestenhoffHogyu HanMinhaeng ChoMichal Maj
Published in: The journal of physical chemistry letters (2019)
Local probes are indispensable to study protein structure and dynamics with site-specificity. The isonitrile functional group is a highly sensitive and H-bonding interaction-specific probe. Isonitriles exhibit large spectral shifts and transition dipole moment changes upon H-bonding while being weakly affected by solvent polarity. These unique properties allow a clear separation of distinct subpopulations of interacting species and an elucidation of their ultrafast dynamics with two-dimensional infrared (2D-IR) spectroscopy. Here, we apply 2D-IR to quantify the picosecond chemical exchange dynamics of solute-solvent complexes forming between isonitrile-derivatized alanine and fluorinated ethanol, where the degree of fluorination controls their H-bond-donating ability. We show that the molecules undergo faster exchange in the presence of more acidic H-bond donors, indicating that the exchange process is primarily dependent on the nature of solvent-solvent interactions. We foresee isonitrile as a highly promising probe for studying of H-bonds dynamics in the active site of enzymes.
Keyphrases
  • ionic liquid
  • living cells
  • single molecule
  • quantum dots
  • high resolution
  • magnetic resonance
  • computed tomography
  • transition metal
  • amino acid
  • liquid chromatography
  • electron transfer
  • low cost