Login / Signup

Metal-Organic Frameworks Significantly Enhance Photocatalytic Hydrogen Evolution and CO2 Reduction with Earth-Abundant Copper Photosensitizers.

Xuanyu FengYunhong PiYang SongCarter BrzezinskiZiwan XuZhong LiWenbin Lin
Published in: Journal of the American Chemical Society (2020)
We report here the design of two multifunctional metal-organic frameworks (MOFs), mPT-Cu/Co and mPT-Cu/Re, comprising cuprous photosensitizers (Cu-PSs) and molecular Co or Re catalysts for photocatalytic hydrogen evolution (HER) and CO2 reduction (CO2RR), respectively. Hierarchical organization of Cu-PSs and Co/Re catalysts in these MOFs facilitates multielectron transfer to drive HER and CO2RR under visible light with an HER turnover number (TON) of 18 700 for mPT-Cu/Co and a CO2RR TON of 1328 for mPT-Cu/Re, which represent a 95-fold enhancement over their homogeneous controls. Photophysical and electrochemical investigations revealed the reductive quenching pathway in HER and CO2RR catalytic cycles and attributed the significantly improved performances of MOFs over their homogeneous counterparts to enhanced electron transfer due to close proximity between Cu-PSs and active catalysts and stabilization of Cu-PSs and molecular catalysts by the MOF framework.
Keyphrases