Synthesis and Inhibitory Activity of Machaeridiol-Based Novel Anti-MRSA and Anti-VRE Compounds and Their Profiling for Cancer-Related Signaling Pathways.
Mallika KumarihamySiddharth TripathiPremalatha BalachandranBharathi AvulaJianping ZhaoMei WangMaria M BennettJin ZhangMary A CarrK Michael LovellOcean I WellingtonMary E MarquartN P Dhammika NanayakkaraIlias MuhammadPublished in: Molecules (Basel, Switzerland) (2022)
Three unique 5,6- seco -hexahydrodibenzopyrans ( seco -HHDBP) machaeridiols A-C, reported previously from Machaerium Pers., have displayed potent activities against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium, and E . faecalis (VRE). In order to enrich the pipeline of natural product-derived antimicrobial compounds, a series of novel machaeridiol-based analogs ( 1 - 17 ) were prepared by coupling stemofuran, pinosylvin, and resveratrol legends with monoterpene units R -(-)- α -phellandrene, (-)- p -mentha-2,8-diene-1-ol, and geraniol, and their inhibitory activities were profiled against MRSA ATCC 1708, VRE ATCC 700221, and cancer signaling pathways. Compounds 5 and 11 showed strong in vitro activities with MIC values of 2.5 μg/mL and 1.25 μg/mL against MRSA, respectively, and 2.50 μg/mL against VRE, while geranyl analog 14 was found to be moderately active (MIC 5 μg/mL). The reduction of the double bonds of the monoterpene unit of compound 5 resulted in 17 , which had the same antibacterial potency (MIC 1.25 μg/mL and 2.50 μg/mL) as its parent, 5 . Furthermore, a combination study between seco -HHDBP 17 and HHDBP machaeriol C displayed a synergistic effect with a fractional inhibitory concentrations (FIC) value of 0.5 against MRSA, showing a four-fold decrease in the MIC values of both 17 and machaeriol C, while no such effect was observed between vancomycin and 17 . Compounds 11 and 17 were further tested in vivo against nosocomial MRSA at a single intranasal dose of 30 mg/kg in a murine model, and both compounds were not efficacious under these conditions. Finally, compounds 1 - 17 were profiled against a panel of luciferase genes that assessed the activity of complex cancer-related signaling pathways (i.e., transcription factors) using T98G glioblastoma multiforme cells. Among the compounds tested, the geranyl-substituted analog 14 exhibited strong inhibition against several signaling pathways, notably Smad, Myc, and Notch, with IC 50 values of 2.17 μM, 1.86 μM, and 2.15 μM, respectively. In contrast, the anti-MRSA actives 5 and 17 were found to be inactive (IC 50 > 20 μM) across the panel of these cancer-signaling pathways.
Keyphrases
- methicillin resistant staphylococcus aureus
- staphylococcus aureus
- signaling pathway
- induced apoptosis
- pi k akt
- transcription factor
- epithelial mesenchymal transition
- papillary thyroid
- molecular docking
- gene expression
- biofilm formation
- magnetic resonance
- squamous cell carcinoma
- magnetic resonance imaging
- cell death
- endoplasmic reticulum stress
- drug resistant
- oxidative stress
- multidrug resistant
- pseudomonas aeruginosa
- transforming growth factor
- lymph node metastasis
- single cell
- candida albicans
- molecular dynamics simulations
- klebsiella pneumoniae