First report on chemometric modeling of hydrolysis half-lives of organic chemicals.
Pathan Mohsin KhanAnna LombardoEmilio BenfenatiKunal RoyPublished in: Environmental science and pollution research international (2020)
Hydrolysis is one of the most important processes of transformation of organic chemicals in water. The rates of reactions, final chemical entities of these processes, and half-lives of organic chemicals are of considerable interest to environmental chemists as well as authorities involved in the controlling the processing and disposal of such organic chemicals. In this study, we have proposed QSPR models for the prediction of hydrolysis half-life of organic chemicals as a function of different pH and temperature conditions using only two-dimensional molecular descriptors with definite physicochemical significance. For each model, suitable subsets of variables were elected using a genetic algorithm method; next, the elected subsets of variables were subjected to the best subset selection with a key objective to determine the best combination of descriptors for model generation. Finally, QSPR models were constructed using the best combination of variables employing the partial least squares (PLS) regression technique. Next, every final model was subjected for strict validation employing the internationally accepted internal and external validation parameters. The proposed models could be applicable for data gap filling to determine hydrolysis half-lives of organic chemicals at different environmental conditions. Generally, presence of aliphatic ether and ether functional groups, high percentage of oxygen content in the molecule and presence of O-Si pairs of atoms at topological distance one, results in a shorter hydrolysis half-life of organic chemicals. On the other hand, higher unsaturation content and high percentage of nitrogen content in molecules lead to higher hydrolysis half-life. It is also found that branched and compact molecules will have a lower half-life while straight chain analogues will have a higher half-life. To the best of our knowledge, the presented models are the first reported QSPR models for hydrolysis half-lives of organic chemicals at different pH values.