Login / Signup

Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice and Rats.

Minyeong PangSo Yeon JeonMin-Koo ChoiJi-Hyeon JeonHye-Young JiJi-Soo ChoiIm Sook Song
Published in: Pharmaceutics (2022)
This study investigated the pharmacokinetics and tissue distribution of enavogliflozin, a novel sodium-glucose cotransporter 2 inhibitor that is currently in phase three clinical trials. Enavogliflozin showed dose-proportional pharmacokinetics following intravenous and oral administration (doses of 0.3, 1, and 3 mg/kg) in both mice and rats. Oral bioavailability was 84.5-97.2% for mice and 56.3-62.1% for rats. Recovery of enavogliflozin as parent form from feces and urine was 39.3 ± 3.5% and 6.6 ± 0.7%, respectively, 72 h after its intravenous injection (1 mg/kg), suggesting higher biliary than urinary excretion in mice. Major biliary excretion was also suggested for rats, with 15.9 ± 5.9% in fecal recovery and 0.7 ± 0.2% in urinary recovery for 72 h, following intravenous injection (1 mg/kg). Enavogliflozin was highly distributed to the kidney, which was evidenced by the AUC ratio of kidney to plasma (i.e., 41.9 ± 7.7 in mice following its oral administration of 1 mg/kg) and showed slow elimination from the kidney (i.e., T 1/2 of 29 h). It was also substantially distributed to the liver, stomach, and small and large intestine. In addition, the tissue distribution of enavogliflozin after single oral administration was not significantly altered by repeated oral administration for 7 days or 14 days. Overall, enavogliflozin displayed linear pharmacokinetics following intravenous and oral administration, significant kidney distribution, and favorable biliary excretion, but it was not accumulated in the plasma and major distributed tissues, following repeated oral administration for 2 weeks. These features may be beneficial for drug efficacy. However, species differences between rats and mice in metabolism and oral bioavailability should be considered as drug development continues.
Keyphrases
  • high fat diet induced
  • clinical trial
  • wild type
  • insulin resistance
  • mass spectrometry
  • neural network
  • study protocol
  • single molecule
  • drug induced