Design and Implementation of a Cloud-IoT-Based Home Energy Management System.
Felipe CondonJosé M MartínezAli M EltamalyYoung-Chon KimMohamed A AhmedPublished in: Sensors (Basel, Switzerland) (2022)
The advances in the Internet of Things (IoT) and cloud computing opened new opportunities for developing various smart grid applications and services. The rapidly increasing adoption of IoT devices has enabled the development of applications and solutions to manage energy consumption efficiently. This work presents the design and implementation of a home energy management system (HEMS), which allows collecting and storing energy consumption data from appliances and the main load of the home. Two scenarios are designed and implemented: a local HEMS isolated from the Internet and relies on its processing and storage duties using an edge device and a Cloud HEMS using AWS IoT Core to manage incoming data messages and provide data-driven services and applications. A testbed was carried out in a real house in the city of Valparaiso, Chile, over a one-year period, where four appliances were used to collect energy consumption using smart plugs, as well as collecting the main energy load of the house through a data logger acting as a smart meter. To the best of our knowledge, this is the first electrical energy dataset with a 10-second sampling rate from a real household in Valparaiso, Chile. Results show that both implementations perform the baseline tasks (collecting, storing, and controlling) for a HEMS. This work contributes by providing a detailed technical implementation of HEMS that enables researchers and engineers to develop and implement HEMS solutions to support different smart home applications.