Login / Signup

Phenotypical Identification and Toxinotyping of Clostridium perfringens Isolates from Healthy and Enteric Disease-Affected Chickens.

Eaftekhar Ahmed RanaTanvir Ahmad NizamiMd Sayedul IslamHimel BaruaMd Zohorul Islam
Published in: Veterinary medicine international (2023)
Clostridium perfringens is a ubiquitous spore-forming anaerobic pathogen that is frequently associated with enteric disease in chickens. Moreover, enterotoxin-producing C. perfringens has high zoonotic potential as well as serious public health concerns due to the emanation of food-borne intoxication. The present study was designed to isolate, identify, and toxinotype C. perfringens from both healthy and cases of necrotic or ulcerative enteritis chickens. A total of 110 samples were collected from July 2019 to February 2021. Among the samples, 38 (34.5%, 95% CI: 26.39-43.83) were positive for C. perfringens and were obtained from broiler 21 (33.3%, 95% CI: 22.91-45.67), Sonali 9 (34.6%, 95% CI: 19.31-53.88), and layer 8 (38%, 95% CI: 20.68-59.20). C. perfringens was highly prevalent (35.7%, 95% CI: 25.48-47.44) in enteritis chickens compared with healthy ones. In multiplex PCR toxinotyping, 34 (89.4%) isolates were identified as C. perfringens type A by the presence of the alpha toxin gene ( cpa ). Moreover, in addition to the cpa gene, 3 (14.3%, 95% CI: 4.14-35.48) broiler and 1 (11.1%, 95% CI: 0.01-45.67) Sonali isolates harbored the enterotoxin gene ( cpe ) and were classified as type F. However, none of the isolates carried genes encoding beta ( cpb ), epsilon ( etx ), iota ( iap ), or beta-2 ( cpb2 ) toxins. Multivariable logistic regression analysis identified the following variables such as; "previously used litter materials" (OR 21.77, 95% CI 2.22-212.66, p ≤ 0.008); intestinal lesions, "presence of ulceration" (OR 30.01, 95% CI 3.02-297.91, p ≤ 0.004); "ballooned with gas" (OR 24.74, 95% CI 4.34-140.86, p ≤ 0.001) and "use of probiotics" (OR 5.24, 95% CI 0.74-36.75, p ≤ 0.095) act as risk factors for C. perfringens colonization in chicken gut. This is the first study of molecular toxinotyping of C. perfringens from healthy and enteric-diseased chickens in Bangladesh, which might have a potential food-borne zoonotic impact on human health.
Keyphrases
  • human health
  • heat stress
  • public health
  • risk assessment
  • genome wide
  • escherichia coli
  • microbial community
  • copy number
  • genetic diversity
  • high throughput
  • disease virus
  • bioinformatics analysis
  • data analysis