Login / Signup

Nanoconfined Topochemical Conversion from MXene to Ultrathin Non-Layered TiN Nanomesh toward Superior Electrocatalysts for Lithium-Sulfur Batteries.

Xia HuangJiayong TangTengfei QiuRuth KnibbeYuxiang HuTobias U SchülliTongen LinZhiliang WangPeng ChenBin LuoLianzhou Wang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2021)
2D non-layered materials (2DNLMs) featuring massive undercoordinated surface atoms and obvious lattice distortion have shown great promise in catalytic/electrocatalytic applications, but their controllable synthesis remains challenging. Here, a new type of ultrathin carbon-wrapped titanium nitride nanomesh (TiN NM@C) is prepared using a rationally designed nano-confinement topochemical conversion strategy. The ultrathin 2D geometry with well-distributed pores offers TiN NM@C plentiful exposed active sites and rapid charge transfer, leading to outstanding electrocatalytic performance tackling the sluggish sulfur redox kinetics in lithium-sulfur batteries (LSBs). LSBs employing TiN NM@C electrocatalyst deliver excellent rate capabilities (e.g., 304 mAh g-1 at 10 C), greatly outperforming that of using TiN nanoparticles embedded in carbon nanosheets (TiN NPs@C) as a benchmark. More impressively, a free-standing electrode for LSBs with a high sulfur loading of 7.3 mg cm-2 is demonstrated, showing a high peak areal capacity of 5.6 mAh cm-2 at a high current density of 6.1 mA cm-2 . This work provides a new avenue for the facile and controllable fabrication of 2DNLMs with impressive electrocatalysis for LSBs as well as other energy conversion and storage technologies.
Keyphrases