Login / Signup

Spatial-frequency features of radiation produced by a step-wise tapered undulator.

Andrei E TrebushininSvitozar SerkezMykola VeremchukYakov V RakshunGianluca Geloni
Published in: Journal of synchrotron radiation (2021)
A scheme to generate wide-bandwidth radiation using a step-wise tapered undulator with a segmented structure is proposed. This magnetic field configuration allows to broaden the undulator harmonic spectrum by two orders of magnitude, providing 1 keV bandwidth with spectral flux density exceeding 1016 photons s-1 mm-2 (0.1% bandwidth)-1 at 5 keV on the sample. Such a magnetic setup is applicable to superconducting devices where magnetic tapering cannot be arranged mechanically. The resulting radiation with broadband spectrum and flat-top shape may be exploited at a multipurpose beamline for scanning over the spectrum at time scales of 10-100 ms. The radiation from a segmented undulator is described analytically and derivations with numerical simulations are verified. In addition, a start-to-end simulation of an optical beamline is performed and issues related to the longitudinally distributed radiation source and its image upon focusing on the sample are addressed.
Keyphrases
  • radiation induced
  • high resolution
  • multiple sclerosis
  • deep learning
  • magnetic resonance imaging
  • magnetic resonance
  • machine learning
  • radiation therapy
  • optical coherence tomography