Hydrogel-Mediated Sustained Systemic Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improves Hepatic Regeneration in Chronic Liver Failure.
Soura MardpourMohammad Hossein GhanianHamid Sadeghi-AbandansariSaeid MardpourAbdoreza NazariFaezeh ShekariHossein BaharvandPublished in: ACS applied materials & interfaces (2019)
Extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have been widely reported as promising cell-free products that show therapeutic effects of the parental cells but not their limitations. Due to the intrinsic liver tropism of MSC-EVs, they have been widely used as therapeutics or drug carriers for treatment of liver diseases. However, rapid clearance from the target site may attenuate the efficiency of systemically administered MSC-EVs. Herein, sustained release into the peritoneum has been proposed as a new strategy to prolong the bioavailability of the MSC-EVs in the target liver. During intraperitoneal injection, clickable polyethylene glycol (PEG) macromeres were mixed with MSC-EVs to form EV-encapsulated PEG hydrogels via a fast, biocompatible click reaction. Upon biodegradation, the EV-laden hydrogels were swollen gradually to release EVs in a sustained manner over 1 month. In vivo tracking of the labeled EVs revealed that the accumulation of EVs in the liver was extended by hydrogel-mediated delivery for 1 month. Four weeks after injection in a rat model of chronic liver fibrosis, the physical and histopathological investigations of the harvested liver showed superior antifibrosis, anti-apoptosis, and regenerative effects of the EVs when delivered by the sustained systemic release (Gel-EV) to the conventional bolus injection (Free-EV). Specifically, the Gel-EV system improved the antifibrosis, anti-inflammation, anti-apoptosis, and regenerative effects of the EVs to nearly 40, 50, 40, and 50% compared to Free-EV, respectively, as was specified by quantification of the fibrotic area, α-SMA density, and caspase-3 density in the harvested tissues and ALT enzyme in serum. This study may potentiate the use of MSC-EVs as cell-free therapeutics for chronic liver failure. The sustained systemic delivery strategy may open a new paradigm to extend the effects of disease-targeting EVs over time.
Keyphrases
- mesenchymal stem cells
- cell free
- liver failure
- drug delivery
- stem cells
- oxidative stress
- tissue engineering
- cell cycle arrest
- hyaluronic acid
- wound healing
- umbilical cord
- liver fibrosis
- hepatitis b virus
- cell death
- cell therapy
- induced apoptosis
- bone marrow
- small molecule
- emergency department
- cancer therapy
- physical activity
- minimally invasive
- idiopathic pulmonary fibrosis
- cell proliferation
- drug induced
- single cell
- adverse drug
- gestational age