Computation of the S1 ← S0 Vibronic Absorption Spectrum of Formaldehyde by Variational Gaussian Wavepacket and Semiclassical IVR Methods.
Matteo BonfantiJakob PetersenPierre EisenbrandtIrene BurghardtEli PollakPublished in: Journal of chemical theory and computation (2018)
The vibronic absorption spectrum of the electric dipole forbidden and vibronically allowed S1(1 A2) ← S0(1 A1) transition of formaldehyde is calculated by Gaussian wavepacket and semiclassical methods, along with numerically exact reference calculations, using the potential energy surface of Fu, Shepler, and Bowman ( J. Am. Chem. Soc. 2011, 133, 7957). Specifically, the variational multiconfigurational Gaussian (vMCG) approach and the Herman-Kluk semiclassical initial value representation (HK-SCIVR) are compared to assess the accuracy and convergence of these methods, benchmarked against numerically exact time-dependent wavepacket propagation (TDWP) on the reference potential energy surface. The vMCG calculation is shown to converge quite well with about 100 variationally evolving Gaussian functions and using a local cubic expansion instead of the conventional local harmonic approximation. By contrast, the HK-SCIVR approach with ∼105 trajectories reproduces the vibrationally structured spectral envelope correctly but yields a strongly broadened spectrum. The comparison of the computed absorption spectrum with experiment shows that the relevant vibronic progressions are reasonably reproduced by all computations, but deviations of the order of 10-100 cm-1 occur, underscoring that both electronic structure calculations and dynamical approaches remain challenging in the calculation of typical small-molecule excited-state spectra by trajectory-based methods.