Login / Signup

Hydrosilylation in Aryliminopyrrolide-Substituted Silanes.

Léon WittemanTim EversZhan ShuMartin LutzRobertus J M Klein GebbinkMarc-Etienne Moret
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2016)
A range of silanes was synthesized by the reaction of HSiCl3 with iminopyrrole derivatives in the presence of NEt3 . In certain cases, intramolecular hydrosilylation converts the imine ligand into an amino substituent. This reaction is inhibited by factors such as electron-donating substitution on Si and steric bulk. The monosubstituted ((Dipp) IMP)SiHMeCl ((Dipp) IMP=2-[N-(2,6-diisopropylphenyl)iminomethyl]pyrrolide), is stable towards hydrosilylation, but slow hydrosilylation is observed for ((Dipp) IMP)SiHCl2 . Reaction of two equivalents of (Dipp) IMPH with HSiCl3 results in the hydrosilylation product ((Dipp) AMP)((Dipp) IMP)SiCl ((Dipp) AMP=2-[N-(2,6-diisopropylphenyl)aminomethylene]pyrrolide), but the trisubsitituted ((Dipp) IMP)3 SiH is stable. Monitoring the hydrosilylation reaction of ((Dipp) IMP)SiHCl2 reveals a reactive pathway involving ligand redistribution reactions to form the disubstituted ((Dipp) AMP)((Dipp) IMP)SiCl as an intermediate. The reaction is strongly accelerated in the presence of chloride anions.
Keyphrases
  • protein kinase
  • electron transfer
  • energy transfer