Login / Signup

Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements.

Eefei ChenRaymond M EsquerraPhilipp A MeléndezSita S ChandrasekaranDavid S Kliger
Published in: The journal of physical chemistry. B (2018)
A protein's folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscosity-the viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell's heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.
Keyphrases