Defect control and Si/Ge core-shell heterojunction formation on silicon nanowire surfaces formed using the top-down method.
Naoki FukataWipakorn JevasuwanYong-Lie SunYoshimasa SugimotoPublished in: Nanotechnology (2022)
Control of surface defects and impurity doping are important keys to realizing devices that use semiconductor nanowires (NWs). As a structure capable of suppressing impurity scattering, p-Si/i (intrinsic)-Ge core-shell NWs with radial heterojunctions inside the NWs were formed. When forming NWs using a top-down method, the positions of the NWs can be controlled, but their surface is damaged. When heat treatment for repairing surface damage is performed, the surface roughness of the NWs closely depends on the kind of atmospheric gas. Oxidation and chemical etching prior to shell formation removes the surface damaged layer on p-SiNWs and simultaneously achieves a reduction in the diameter of the NWs. Finally, hole gas accumulation, which is important for suppressing impurity scattering, can be observed in the i-Ge layers of p-Si/i-Ge core-shell NWs.