Login / Signup

Multipronged Regulatory Functions of Serum Albumin in Early Stages of Amyloid-β Aggregation.

Mengjuan ZhaoCong Guo
Published in: ACS chemical neuroscience (2021)
Human serum albumin (HSA) is a major interacting-partner of Alzheimer's amyloid-β (Aβ) peptide in the plasma and has emerged as a promising therapeutic target. HSA inhibits Aβ fibrillization, but the underlying molecular mechanism is not well elucidated. In this work, we investigated the role of HSA in the early stages of Aβ aggregation by simulating the binding process of multiple Aβ monomers and protofibrils to HSA with extensive molecular dynamics simulations. HSA could simultaneously trap multiple Aβ monomers and accommodate the formation of nonfibrillar Aβ oligomers after binding. In particular, domains I and III show stronger binding capacities and hold preferable interaction sites for oligomers. Consequently, HSA prevents the formation of fibrillar oligomers in water, thus interfering with the nucleation process. On the other aspect, when protofibrils are preformed, HSA tends to block the β-strand spanning the central hydrophobic core located at the protofibril end, preventing the addition of monomers to protofibrils. Furthermore, Aβ protofibril structures are severely disrupted both globally and locally. Thus, further growth of protofibrils to fibrils is impeded by HSA. Our results collectively indicate that HSA performs multipronged regulatory functions in the early stages of Aβ aggregation. Our work advances the understanding of the amyloid inhibition of Aβ by HSA and provides theoretical guidance for developing rational therapies of Alzheimer's disease.
Keyphrases