Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction.
Nicole K BiltzKelsey H CollinsKaren C ShenKendall SchwartzCharles A HarrisGretchen A MeyerPublished in: The Journal of physiology (2020)
Intramuscular adipose tissue (IMAT) is associated with deficits in strength and physical function across a wide array of conditions, from injury to ageing to metabolic disease. Due to the diverse aetiologies of the primary disorders involving IMAT and the strength of the associations, it has long been proposed that IMAT directly contributes to this muscle dysfunction. However, infiltration of IMAT and reduced strength could both be driven by muscle disuse, injury and systemic disease, making IMAT simply an 'innocent bystander.' Here, we utilize novel mouse models to evaluate the direct effect of IMAT on muscle contraction. First, we utilize intramuscular glycerol injection in wild-type mice to evaluate IMAT in the absence of systemic disease. In this model we find that, in isolation from the neuromuscular and circulatory systems, there remains a muscle-intrinsic association between increased IMAT volume and decreased contractile tension (r2 > 0.5, P < 0.01) that cannot be explained by reduction in contractile material. Second, we utilize a lipodystrophic mouse model which cannot generate adipocytes to 'rescue' the deficits. We demonstrate that without IMAT infiltration, glycerol treatment does not reduce contractile force (P > 0.8). Taken together, this indicates that IMAT is not an inert feature of muscle pathology but rather has a direct impact on muscle contraction. This finding suggests that novel strategies targeting IMAT may improve muscle strength and function in a number of populations.