Construction of Metal Hydrate-Based Amorphous Magnetic Nanosheets for Enhanced Protein Enrichment and Immobilization.
Zhi-Yong GuoChen ZhangRui-Wen JiaoQiu-Hong YaoTing-Xiu YeXi ChenPublished in: ACS applied materials & interfaces (2021)
Inspired by the hierarchical fabrication technique, many self-assembly procedures have improved the construction of nanomaterials with unique physicochemical characteristics and multiple functions. The generation of multiple complexes is always accompanied by hierarchical structures and intriguing properties that are distinct from their individual segments. An interesting composite is amorphous magnetic Zn-Zr phosphate hydrated nanosheets (Zn-Zr APHNs), generated using templated synthesis and nanoparticle codeposition. The special porous structure of this construct, together with the abundance of metal ions and hydrate present, endows it with many interaction sites for proteins, provides high loading efficiency, and enhances bioactivity. Then, a series of proteins, including enzymes, was immobilized by the Zn-Zr APHNs by multiple interactions, high ionization, and larger surface of the nanosheets. In this study, novel methods for the enrichment of bioactive proteins while retaining the activity of protein payloads are presented. As a verification method, it is indicated that the Zn-Zr APHNs can deliver enzyme proteins (i.e., Cyt-c) to increase the catalytic activity with their biological function and structural integrity, resulting in a highly increased activity to free proteins.