Login / Signup

Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

Timothy J KucharskiNicola FerralisAlexie M KolpakJennie O ZhengDaniel G NoceraJeffrey C Grossman
Published in: Nature chemistry (2014)
Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.
Keyphrases
  • carbon nanotubes
  • low cost
  • physical activity
  • mental health
  • high resolution
  • single molecule