Login / Signup

Polysaccharides, Total Phenolic, and Flavonoid Content from Different Kenaf (Hibiscus cannabinus L.) Genotypes and Their Antioxidants and Antibacterial Properties.

Ziggiju Mesenbet BirhanieAiping XiaoDawei YangSiqi HuangChao ZhangLining ZhaoLiangliang LiuJianjun LiAnguo ChenHuijuan TangLi ChangGen PanCuiping ZhangAshok BiswasSusmita DeyDefang LiYong Deng
Published in: Plants (Basel, Switzerland) (2021)
Kenaf (Hibiscus cannabinus L.) is a valuable plant with a potential health benefit because of its extensive bioactive compounds. Leaf extracts of 33 kenaf genotypes were investigated for their polysaccharide, total phenolic, and flavonoid content. The antioxidant properties were evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant potential (FRAP) assays. Antimicrobial capacity was also assessed against Staphylococcus aureus and Escherichia coli using a disc diffusion assay. The polysaccharide content varied from 6.45-16.12 mg glucose per g DW. Total phenolic and flavonoid content ranged from 6.03-21.15 mg GAE/g DW and 1.55-9.24 mg RE/g DW, respectively. Similarly, varied values in the range 20.55-79.99% of inhibition by DPPH, 56.28-88.30% of inhibition by ABTS and 1.26-5.08 mmol Fe2+/g DW by FRAP assays were obtained for antioxidants of the genotype extracts. Extracts from CS4 and CS2 genotypes had the highest antioxidant activities. Kenaf leaves exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. Strong correlation was found between antioxidant activity with polysaccharide (DPPH, r = 0.893; ABTS, r = 0.819; FRAP, r = 0.864) and total phenolic content (DPPH, r = 0.850; ABTS, r = 0.959; FRAP, r = 0.953). The results suggested that the kenaf leaves could be used as a natural antioxidants and antimicrobial in food industries.
Keyphrases