Login / Signup

PerHeFed: A general framework of personalized federated learning for heterogeneous convolutional neural networks.

Le MaYuYing LiaoBin ZhouWen Xi
Published in: World wide web (2022)
In conventional federated learning, each device is restricted to train a network model of the same structure. This greatly hinders the application of federated learning where the data and devices are quite heterogeneous because of their different hardware equipment and communication networks. At the same time, existing studies have shown that transmitting all of the model parameters not only has heavy communication costs, but also increases risk of privacy leakage. We propose a general framework for personalized federated learning (PerHeFed), which enables the devices to design their local model structures autonomously and share sub-models without structural restrictions. In PerHeFed, a simple-but-effective mapping relation and a novel personalized sub-model aggregation method are proposed for heterogeneous sub-models to be aggregated. By dividing the aggregations into two primitive types (i.e., inter-layer and intra-layer), PerHeFed is applicable to any combination of heterogeneous convolutional neural networks, and we believe that this can satisfy the personalized requirements of heterogeneous models. Experiments show that, compared to the state-of-the-art method (e.g., FLOP), in non-IID data sets our method compress ≈ 50 % of the shared sub-model parameters with only a 4.38% drop in accuracy on SVHN dataset and on CIFAR-10, PerHeFed even achieves a 0.3% improvement in accuracy. To the best of our knowledge, our work is the first general personalized federated learning framework for heterogeneous convolutional networks, even cross different networks, addressing model structure unity in conventional federated learning.
Keyphrases
  • convolutional neural network
  • healthcare
  • high resolution
  • electronic health record
  • case control
  • data analysis
  • network analysis