Different estimation techniques and data analysis for constant-partially accelerated life tests for power half-logistic distribution.
Ghadah A AlomaniAmal S HassanAmer I Al-OmariEhab M AlmetwallyPublished in: Scientific reports (2024)
Partial accelerated life tests (PALTs) are employed when the results of accelerated life testing cannot be extended to usage circumstances. This work discusses the challenge of different estimating strategies in constant PALT with complete data. The lifetime distribution of the test item is assumed to follow the power half-logistic distribution. Several classical and Bayesian estimation techniques are presented to estimate the distribution parameters and the acceleration factor of the power half-logistic distribution. These techniques include Anderson-Darling, maximum likelihood, Cramér von-Mises, ordinary least squares, weighted least squares, maximum product of spacing and Bayesian. Additionally, the Bayesian credible intervals and approximate confidence intervals are constructed. A simulation study is provided to compare the outcomes of various estimation methods that have been provided based on mean squared error, absolute average bias, length of intervals, and coverage probabilities. This study shows that the maximum product of spacing estimation is the most effective strategy among the options in most circumstances when adopting the minimum values for MSE and average bias. In the majority of situations, Bayesian method outperforms other methods when taking into account both MSE and average bias values. When comparing approximation confidence intervals to Bayesian credible intervals, the latter have a higher coverage probability and smaller average length. Two authentic data sets are examined for illustrative purposes. Examining the two real data sets shows that the value methods are workable and applicable to certain engineering-related problems.