Antitumor Activity of the IGF-1/IGF-2-Neutralizing Antibody Xentuzumab (BI 836845) in Combination with Enzalutamide in Prostate Cancer Models.
Ulrike Weyer-CzernilofskyMarco H HofmannKatrin FriedbichlerRosa BaumgartingerPaul J AdamFlavio SolcaNorbert KrautHolly M NguyenEva CoreyGang LiuCynthia C SprengerStephen R PlymateThomas BogenriederPublished in: Molecular cancer therapeutics (2020)
Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as enzalutamide are standard treatments for advanced/metastatic prostate cancer. Unfortunately, most men develop resistance and relapse; signaling via insulin-like growth factor (IGF) has been implicated in castration-resistant prostate cancer. We evaluated the antitumor activity of xentuzumab (IGF ligand-neutralizing antibody), alone and in combination with enzalutamide, in prostate cancer cell lines (VCaP, DuCaP, MDA PCa 2b, LNCaP, and PC-3) using established in vitro assays, and in vivo, using LuCaP 96CR, a prostate cancer patient-derived xenograft (PDX) model. Xentuzumab + enzalutamide reduced the viability of phosphatase and tensin homolog (PTEN)-expressing VCaP, DuCaP, and MDA PCa 2b cells more than either single agent, and increased antiproliferative activity and apoptosis induction in VCaP. Xentuzumab or xentuzumab + enzalutamide inhibited IGF type 1 receptor and AKT serine/threonine kinase (AKT) phosphorylation in VCaP, DuCaP, and MDA PCa 2b cells; xentuzumab had no effect on AKT phosphorylation and proliferation in PTEN-null LNCaP or PC-3 cells. Knockdown of PTEN led to loss of antiproliferative activity of xentuzumab and reduced activity of xentuzumab + enzalutamide in VCaP cells. Xentuzumab + enzalutamide inhibited the growth of castration-resistant LuCaP 96CR PDX with acquired resistance to enzalutamide, and improved survival in vivo The data suggest that xentuzumab + enzalutamide combination therapy may overcome castration resistance and could be effective in patients who are resistant to enzalutamide alone. PTEN status as a biomarker of responsiveness to combination therapy needs further investigation.
Keyphrases
- prostate cancer
- pi k akt
- cell cycle arrest
- signaling pathway
- radical prostatectomy
- combination therapy
- cell proliferation
- protein kinase
- binding protein
- induced apoptosis
- growth hormone
- squamous cell carcinoma
- end stage renal disease
- oxidative stress
- breast cancer cells
- ejection fraction
- chronic kidney disease
- cell death
- endoplasmic reticulum stress
- prognostic factors
- electronic health record
- zika virus
- peritoneal dialysis
- data analysis
- cell therapy