Login / Signup

Highly sensitive determination of paracetamol, uric acid, dopamine, and catechol based on flexible plastic electrochemical sensors.

Jiabao ZuoYuliang ShenJuanjuan GaoHaiou SongZhiwen YeYing LiangShupeng Zhang
Published in: Analytical and bioanalytical chemistry (2022)
Flexible sensing is an alternative to traditional sensing and possesses good flexibility and wearability. Intrinsically conductive polymers, particularly poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), have received significant attention due to their high mechanical flexibility and good biocompatibility. Here, we report the design of highly conductive and electrochemically active PEDOT:PSS-coated plastic substrate electrodes by combining N-doped graphene (NG) or S-doped graphene (SG) with methanesulfonic acid-treated PEDOT:PSS (denoted as NG-f-MSA-PEDOT:PSS/PET and SG-f-MSA-PEDOT:PSS/PET) by a simple drop-coating method. At room temperature, the NG-f-MSA-PEDOT:PSS/PET electrode demonstrated the lowest detection limits of 17.09, 33.84, 28.30, and 44.96 nM for paracetamol, uric acid, dopamine, and catechol (S/N = 3), respectively. The NG-f-MSA-PEDOT:PSS/PET electrode had good anti-interference ability and reproducibility without employing expensive noble metals and requiring much effort to polish the surface of traditional glass carbon electrodes. Most importantly, this film electrode could maintain a stable electrochemical response under different bending and crease states and had excellent mechanical stability and flexibility.
Keyphrases