Login / Signup

Applications of artificial intelligence for hypertension management.

Kelvin Kam-Fai TsoiKaren YiuHelen LeeHao-Min ChengTzung-Dau WangJam-Chin TayBoon Wee TeoYuda TuranaArieska Ann SoenartaGuru Prasad SogunuruSaulat SiddiqueYook-Chin ChiaJinho ShinChen-Huan ChenJi-Guang WangKazuomi Karionull null
Published in: Journal of clinical hypertension (Greenwich, Conn.) (2021)
The prevalence of hypertension is increasing along with an aging population, causing millions of premature deaths annually worldwide. Low awareness of blood pressure (BP) elevation and suboptimal hypertension diagnosis serve as the major hurdles in effective hypertension management. The advent of artificial intelligence (AI), however, sheds the light of new strategies for hypertension management, such as remote supports from telemedicine and big data-derived prediction. There is considerable evidence demonstrating the feasibility of AI applications in hypertension management. A foreseeable trend was observed in integrating BP measurements with various wearable sensors and smartphones, so as to permit continuous and convenient monitoring. In the meantime, further investigations are advised to validate the novel prediction and prognostic tools. These revolutionary developments have made a stride toward the future model for digital management of chronic diseases.
Keyphrases
  • artificial intelligence
  • blood pressure
  • big data
  • machine learning
  • deep learning
  • heart rate
  • type diabetes
  • skeletal muscle
  • arterial hypertension
  • current status
  • blood glucose