Nonvolatile Rewritable Frequency Tuning of a Nanoelectromechanical Resonator Using Photoinduced Doping.
David MillerAndrew BlaikieBenjamín J AlemánPublished in: Nano letters (2020)
Arrays of nanoelectromechanical resonators (NEMS) have shown promise for a suite of applications, from nanomechanical information processing technologies to mass spectrometry. A fundamental challenge toward broader adoption of NEMS arrays is a lack of viable frequency tuning methods, which must simultaneously allow for persistent and reversible control of single resonators while also being scalable to large arrays of devices. In this work, we demonstrate an electro-optic tuning method for graphene-based NEMS where locally photoionized charge tensions a suspended membrane and tunes its resonance frequency. The tuned frequency state persists unchanged for several days in the absence of any external power, and the state can be repeatedly written and erased with a high degree of precision. We show the scalability of this technique by aligning the frequencies of several NEMS devices on the same chip, and we discuss implications of this tuning method for both single devices and programmable NEMS networks.