Login / Signup

Sensors for indoor air quality monitoring and assessment through Internet of Things: a systematic review.

Jagriti SainiMaitreyee DuttaGoncalo Marques
Published in: Environmental monitoring and assessment (2021)
The growing populations around the world are closely associated with rising levels of air pollution. The impact is not restricted to outdoor areas. Moreover, the health of building occupants is also deteriorating due to poor indoor air quality. As per the World Health Organization, indoor air pollution is a leading cause of 1.6 million premature deaths annually. Therefore, numerous companies have started the development of low-cost sensors to monitor indoor air pollution with the Internet of Things-based applications. However, due to the close association of air pollution levels to the mortality and morbidity rates, communities face several limitations while selecting sensors to address this public health challenge. The main contribution of this systematic review is to present a qualitative and quantitative evaluation of low-cost sensors while providing deep insights into the selection criteria for adequate monitoring. The authors in this paper discussed studies published after the year 2015, and it includes an analysis of papers published in the English language only. Moreover, this study highlights crucial research questions, states answers, and provides recommendations for future research studies. The outcomes of this paper will be useful for students, researchers, and industry members concerning the upcoming research and manufacturing activities. The results show that 28 studies (70%) include indoor thermal comfort assessment, 26 (65%) and 12 (30%) studies include CO2 and CO sensors, respectively. In total, 32 (45.7%) out of 71 sensors (whose prices are available) discussed in this study are available in a price below the US $20 over online marketplaces. Furthermore, the authors conclude that 77.5% of the analyzed literature does not include calibration details, and the accuracy specification is missing for 39.4% sensors.
Keyphrases