Login / Signup

Sustained Effectiveness and Safety of Therapeutic miR-10a/b in Alleviating Diabetes and Gastrointestinal Dysmotility without Inducing Cancer or Inflammation in Murine Liver and Colon.

Uday C GhoshalSe Eun HaHan Sung ParkSushmita DebnathHayeong ChoGain BaekTae Yang YuSeungil Ro
Published in: International journal of molecular sciences (2024)
microRNAs (miRNAs) are key regulators of both physiological and pathophysiological mechanisms in diabetes and gastrointestinal (GI) dysmotility. Our previous studies have demonstrated the therapeutic potential of miR-10a-5p mimic and miR-10b-5p mimic (miR-10a/b mimics) in rescuing diabetes and GI dysmotility in murine models of diabetes. In this study, we elucidated the safety profile of a long-term treatment with miR-10a/b mimics in diabetic mice. Male C57BL/6 mice were fed a high-fat, high-sucrose diet (HFHSD) to induce diabetes and treated by five subcutaneous injections of miR-10a/b mimics for a 5 month period. We examined the long-term effects of the miRNA mimics on diabetes and GI dysmotility, including an assessment of potential risks for cancer and inflammation in the liver and colon using biomarkers. HFHSD-induced diabetic mice subcutaneously injected with miR-10a/b mimics on a monthly basis for 5 consecutive months exhibited a marked reduction in fasting blood glucose levels with restoration of insulin and significant weight loss, improved glucose and insulin intolerance, and restored GI transit time. In addition, the miR-10a/b mimic-treated diabetic mice showed no indication of risk for cancer development or inflammation induction in the liver, colon, and blood for 5 months post-injections. This longitudinal study demonstrates that miR-10a/b mimics, when subcutaneously administered in diabetic mice, effectively alleviate diabetes and GI dysmotility for 5 months with no discernible risk for cancer or inflammation in the liver and colon. The sustained efficacy and favorable safety profiles position miR-10a/b mimics as promising candidates in miRNA-based therapeutics for diabetes and GI dysmotility.
Keyphrases