Design and Fabrication of Yttrium Ferrite Garnet-Embedded Graphitic Carbon Nitride: A Sensitive Electrocatalyst for Smartphone-Enabled Point-of-Care Pesticide (Mesotrione) Analysis in Food Samples.
Umamaheswari RajajiSathishkumar ChinnapaiyanShen-Ming ChenMani GovindasamyJosé Ilton de Oliveira FilhoWalaa KhushaimVeerappan ManiPublished in: ACS applied materials & interfaces (2021)
As the use of pesticides in agriculture is increasing at an alarming rate, food contamination by pesticide residues is becoming a huge global problem. It is essential to develop a sensitive and user-friendly sensor device to quantify trace levels of pesticide and herbicide residues in food samples. Herein, we report an electrocatalyst made up of yttrium iron garnet (Y3Fe5O12; YIG) and graphitic carbon nitride (GCN) to attain picomolar-level detection sensitivity for mesotrione (MTO), which is a widely used herbicide in agriculture. First, YIG was prepared by a hydrothermal route; then, it was loaded on GCN sheets via a calcination method. The surface structures, composition, crystallinity, and interfacial and electrocatalytic properties of the YIG and YIG/GCN were analyzed. As the YIG/GCN displayed better surface and catalytic properties than YIG, YIG/GCN was modified on a screen-printed carbon electrode to fabricate a sensor for MTO. The YIG/GCN-modified electrode displayed a detection limit of 950 pM for MTO. The method was demonstrated in (spiked) fruits and vegetables. Then, the modified electrode was integrated with a miniaturized potentiostat called KAUSTat, which can be operated wirelessly by a smartphone. A first smartphone-based portable sensor was demonstrated for MTO that is suitable for use in nonlaboratory settings.
Keyphrases