Login / Signup

L-Phenylalanine-Templated Platinum Catalyst with Enhanced Performance for Oxygen Reduction Reaction.

Jiajun WangShyam KattelZongyuan WangJingguang G ChenChang-Jun Liu
Published in: ACS applied materials & interfaces (2018)
Pt-based materials are the most efficient catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells. However, fabrication of active and stable Pt catalysts still remains challenging. In this work, Pt-l-phenylalanine (Pt-LPHE) films, with highly dispersed Pt nanoparticles (NPs) featuring predominately (111) facets, have been prepared via a room-temperature electron reduction method. Loading Pt-LPHE onto carbon support produces a novel nanomaterial (Pt-AL/C), resulting in a simultaneous loading of highly dispersed Pt NPs and N doping. Density functional theory calculations demonstrate that the N dopants stabilize the Pt NPs and reduce the *O/*OH binding energies on the Pt NPs. As a result, the Pt-AL/C nanomaterial shows significantly enhanced ORR activity and stability over commercial Pt/C after 10 000 cycle stability tests. This work provides a novel eco-friendly and energy-neutral approach for preparing metal NPs with controllable structures and sizes.
Keyphrases