Login / Signup

Fabrication of a Stable Europium-Based Luminescent Sensor for Fast Detection of Urinary 1-Hydroxypyrene Constructed from a Tetracarboxylate Ligand.

Yan YangJiandong PangYun-Wu LiLei SunHao ZhangLuyao ZhangShuting XuTaiwen Jiang
Published in: Inorganic chemistry (2021)
A novel europium-centered metal-organic framework fabricated from a symmetric and rigid ligand with tetracarboxylate groups, 2,6-di(2',5'-dicarboxylphenyl)pyridine (H4ddpp), has been synthesized solvothermally. Characterized by single-crystal X-ray diffraction, compound 1 features a 3D microporous structure with a butterfly-shaped trinuclear Eu3(COO)6 secondary building unit. Interestingly, three kinds of 1D open channels viewed in different directions in compound 1 are discovered, and the void ratio is calculated to be 47.5% by PLATON software. Solid-state luminescent experiments at 298 K reveal that compound 1 displays naked-eye characteristic red emission of Eu3+ ions monitoring the typical 5D0 → 7F2 transition. The exploration of luminescent sensing tests discloses that compound 1 has an outstanding capacity for recognizing urinary 1-hydroxypyrene (1-HP) with a quite fast response and high sensitivity, giving the quenching efficiency of 98.2% after the immersion time for just 1 min and 73.2% with the amount of 1-HP only 0.05 mg/mL. To our knowledge, it is the first reported Eu-MOF as an extremely fast-responsive and highly sensitive luminescent sensor for 1-HP which is interference-free from other urinary components. Furthermore, the successful preparation of the luminescent test papers makes compound 1 convenient, easy, and real-time in the application for sensing 1-HP in biomedical and biological fields.
Keyphrases