Login / Signup

Spatiotemporal Control over Chemical Assembly in Living Cells by Integration of Acid-Catalyzed Hydrolysis and Enzymatic Reactions.

Xuejiao YangHonglei LuYinghua TaoLaicheng ZhouHuaimin Wang
Published in: Angewandte Chemie (International ed. in English) (2021)
Spatiotemporal control of chemical assembly in living cells remains challenging. We have now developed an efficient and general platform to precisely control the formation of assemblies in living cells. We introduced an O-[bis(dimethylamino)phosphono]tyrosine protection strategy in the self-assembly motif as the Trojan horse, whereby the programmed precursors resist hydrolysis by phosphatases on and inside cells because the unmasking of the enzymatic cleavage site occurs selectively in the acidic environment of lysosomes. After demonstrating the multistage self-assembly processes in vitro by liquid chromatography/mass spectrometry (LC-MS), cryogenic electron microscopy (Cryo-EM), and circular dichroism (CD), we investigated the formation of site-specific self-assembly in living cells using confocal laser scanning microscopy (CLSM), LC-MS, and biological electron microscopy (Bio-EM). Controlling chemical assembly in living systems spatiotemporally may have applications in supramolecular chemistry, materials science, synthetic biology, and chemical biology.
Keyphrases