Login / Signup

Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.

Liang DongJun LouVivek B Shenoy
Published in: ACS nano (2017)
Piezoelectricity in 2D van der Waals materials has received considerable interest because of potential applications in nanoscale energy harvesting, sensors, and actuators. However, in all the systems studied to date, strain and electric polarization are confined to the basal plane, limiting the operation of piezoelectric devices. In this paper, based on ab initio calculations, we report a 2D materials system, namely, the recently synthesized Janus MXY (M = Mo or W, X/Y = S, Se, or Te) monolayer and multilayer structures, with large out-of-plane piezoelectric polarization. For MXY monolayers, both strong in-plane and much weaker out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. For multilayer MXY, we obtain a very strong out-of-plane piezoelectric polarization when strained transverse to the basal plane, regardless of the stacking sequence. The out-of-plane piezoelectric coefficient d33 is found to be strongest in multilayer MoSTe (5.7-13.5 pm/V depending on the stacking sequence), which is larger than that of the commonly used 3D piezoelectric material AlN (d33 = 5.6 pm/V); d33 in other multilayer MXY structures are a bit smaller, but still comparable. Our study reveals the potential for utilizing piezoelectric 2D materials and their van der Waals multilayers in device applications.
Keyphrases
  • air pollution
  • magnetic resonance imaging
  • risk assessment
  • transition metal
  • mass spectrometry
  • heavy metals
  • climate change
  • molecular dynamics
  • polycyclic aromatic hydrocarbons
  • human health
  • low cost
  • solid state