Relating Defect Luminescence and Nonradiative Charge Recombination in MAPbI3 Perovskite Films.
Alexander DobrovolskyAboma MerdasaJun LiKatrin HirselandtEva L UngerIvan G ScheblykinPublished in: The journal of physical chemistry letters (2020)
Nonradiative losses in semiconductors are related to defects. At cryogenic temperatures, defect-related photoluminescence (PL) at energies lower than the band-edge PL is observed in methylammonium lead triiodide perovskite. We applied multispectral PL imaging to samples prepared by two different procedures and exhibiting 1 order of magnitude different PL quantum yield (PLQY). The high-PLQY sample showed concentration of the emitting defect sites around 1012-1013 cm-3. No correlation between PLQY and the relative intensity of the defect emission was found when micrometer-sized local regions of the same sample were compared. However, a clear positive correlation between the lower PLQY and higher defect emission was observed when two preparation methods were contrasted. Therefore, although the emissive defects are not connected directly with the nonradiative centers and may be spatially separated at the nano scale, chemical processes during the perovskite synthesis promote/prevent formation of both types of defects at the same time.