Login / Signup

Gelatin Nanoparticles can Improve Pesticide Delivery Performance to Plants.

Sunho ParkMahpara SafdarWoochan KimJaehwi SeolDream KimKyeong-Hwan LeeHyoung Il SonJangho Kim
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Nanomaterials associated with plant growth and crop cultivation revolutionize traditional concepts of agriculture. However, the poor reiterability of these materials in agricultural applications necessitates the development of environmentally-friendly approaches. To address this, biocompatible gelatin nanoparticles (GNPs) as nanofertilizers with a small size (≈150 nm) and a positively charged surface (≈30 mV) that serve as a versatile tool in agricultural practices is designed. GNPs load agrochemical agents to improve maintenance and delivery. The biocompatible nature and small size of GNPs ensure unrestricted nutrient absorption on root surfaces. Furthermore, when combined with pesticides, GNPs demonstrate remarkable enhancements in insecticidal (≈15%) and weed-killing effects (≈20%) while preserving the efficacy of the pesticide. That GNPs have great potential for use in sustainable agriculture, particularly in inducing plant growth, specifically plant root growth, without fertilization and in enhancing the functions of agrochemical agents is proposed. It is suggested conceptual applications of GNPs in real-world agricultural practices.
Keyphrases
  • plant growth
  • climate change
  • risk assessment
  • human health
  • heavy metals
  • primary care
  • healthcare
  • ionic liquid
  • hyaluronic acid
  • drug release
  • staphylococcus aureus
  • drug delivery