Login / Signup

Soil Solarization Efficiently Reduces Fungal Soilborne Pathogen Populations, Promotes Lettuce Plant Growth, and Affects the Soil Bacterial Community.

George T TzirosAnastasios SamarasGeorgios S Karaoglanidis
Published in: Biology (2024)
Lettuce is the most cultivated leafy vegetable in Greece; however, due to the adopted intensive cropping system, its cultivation is susceptible to many soilborne pathogens that cause significant yield and quality losses. In the current study, the impact of various soil disinfestation methods such as solarization, chemical disinfestation, and application of a biofungicide were evaluated in a commercial field that has been repeatedly used for lettuce cultivation. The populations of soilborne pathogens Rhizoctonia solani , Pythium ultimum , Fusarium oxysporum, and Fusarium equiseti were measured via qPCR before and after the implementation of the specific disinfestation methods. Although all the tested methods significantly reduced the population of the four soilborne pathogens, soil solarization was the most effective one. In addition, solarization reduced the number of lettuce plants affected by the pathogens R. solani and F. equiseti , and at the same time, significantly influenced the growth of lettuce plants. Amplicon sequence analysis of 16S rRNA-encoding genes used to study the soil bacterial community structure showed that Firmicutes, Proteobacteria, and Actinobacteria were the predominant bacterial phyla in soil samples. In general, solarization had positive effects on Firmicutes and negative effects on Proteobacteria and Actinobacteria; soil fumigation with dazomet increased the relative abundance of Firmicutes and Proteobacteria and reduced the corresponding values of Actinobacteria; and biofungicide had no significant effects on the three predominant bacterial phyla. The bacterial community composition and structure varied after the application of the soil disinfestation treatments since they imposed changes in the α- and β-diversity levels. The results of this study are expected to contribute towards implementing the most effective control method against the most common soilborne pathogens in intensively cultivated fields, such as those cultivated with leafy vegetables.
Keyphrases
  • plant growth
  • gram negative
  • primary care
  • quality improvement
  • gene expression
  • dna methylation
  • multidrug resistant
  • microbial community
  • wastewater treatment
  • candida albicans