Login / Signup

Diatom Frustule Silica Exhibits Superhydrophilicity and Superhemophilicity.

Jeehee LeeHaesung A LeeMikyung ShinLih Jiin JuangChristian J KastrupGyung Min GoHaeshin Lee
Published in: ACS nano (2020)
Special surface wettability attracts significant attention. In this study, dramatic differences in wettability are demonstrated for microparticles with the same chemical composition, SiO2. One is natural silica prepared from the diatom, Melosira nummuloides, and the other is synthetic silica. We found that surface properties of synthetic silica are hydro- and hemophobic. However, diatom frustule silica exhibits superhydrophilicity and even superhemophilicity. Interestingly, such superhydrophilicity of natural silica is not solely originated from nanoporous structures of diatoms but from the synergy of high-density silanol anions and the nanoarchitecture. Furthermore, the observation of superhemophilicity of natural silica is also an interesting finding, because not all superhydrophilic surfaces show superhemophilicity. We demonstrate that superhemowettability is a fundamental principle for developing micropowder-based hemostatic materials despite existing hemorrhaging studies using diatoms.
Keyphrases
  • working memory
  • high resolution
  • mass spectrometry
  • pseudomonas aeruginosa