Targeting the Complement Cascade for Treatment of Dry Age-Related Macular Degeneration.
Prem N PatelParth A PatelMatthew R LandIbrahim Bakerkhatib-TahaHarris AhmedVeeral S ShethPublished in: Biomedicines (2022)
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in the elderly population. AMD is characterized in its late form by neovascularization (wet type) or geographic atrophy of the retinal pigment epithelium cell layer (dry type). Regarding the latter type, there is growing evidence supporting an association between the pathophysiology of dry AMD and key proteins in the complement cascade. The complement cascade works as a central part of the innate immune system by defending against foreign pathogens and modified self-tissues. Through three distinct pathways, a series of plasma and membrane-associated serum proteins are activated upon identification of a foreign entity. Several of these proteins have been implicated in the development and progression of dry AMD. Potential therapeutic targets include C1q, C3, C5, complement factors (B, D, H, I), membrane attack complex, and properdin. In this review, we provide an understanding of the role of the complement system in dry AMD and discuss the emerging therapies in early phase clinical trials. The tentative hope is that these drugs may offer the potential to intervene at earlier stages in dry AMD pathogenesis, thereby preventing progression to late disease.