Login / Signup

Recent advances in low-power-threshold nonlinear photochromic materials.

Yoichi KobayashiJiro Abe
Published in: Chemical Society reviews (2022)
Incoherent nonlinear photophysical and photochemical processes based on stepwise two-photon absorption (2PA) processes have been recently used in materials science owing to their unique photoresponses beyond one-photon processes and lower power thresholds to induce the processes than those of coherent nonlinear optical processes. Among them, nonlinear photochromic materials have received considerable attention because they exhibit unconventional photoresponses compared with other incoherent nonlinear processes such as low-power-threshold nonlinear photoresponses with unimolecular systems, gated photochemical reactions and oxygen-insensitive nonlinear photoresponses. Nonlinear photochromic materials are important not only for colorimetric materials, but also for emergent materials that can enrich the next-generation society such as dynamic holographic materials, which are promising for three-dimensional displays. In this tutorial review, we introduce low-power-threshold nonlinear photochromic materials using stepwise 2PA processes. First, we explain the fundamental concepts of photochemistry as well as photochromic reactions. We attempt to provide an intuitive understanding of incoherent nonlinear optical processes using these fundamental concepts. Then, we introduce several recent examples and potential applications of nonlinear photochromic materials. This tutorial review is important for understanding the scientific progress related to these fields and provides a simple unified picture of the incoherent nonlinear optical properties of different types of photofunctional materials.
Keyphrases
  • high resolution
  • magnetic resonance
  • contrast enhanced
  • mass spectrometry
  • climate change
  • risk assessment
  • drug induced
  • high speed
  • human health