Influence of CYP2D6 Metabolizer Status on Risperidone and Paliperidone Tolerability in Children and Adolescents.
Amarachi A KanuMichelle M JohnstonEthan A PoweleitSamuel E VaughnJeffrey A MillsLaura B RamseyPublished in: Journal of child and adolescent psychopharmacology (2024)
Background: Risperidone and, to a lesser extent, paliperidone are metabolized by CYP2D6; however, there are limited data related to variation in CYP2D6 phenotypes and the tolerability of these medications in children and adolescents. Furthermore, the impact of CYP2D6 on the association of risperidone and paliperidone with hyperprolactinemia in youth is not well understood. Methods: A retrospective chart review was performed in psychiatrically hospitalized children and adolescents prescribed risperidone ( n = 263, age = 3-18 years, mean age = 13 ± 3 years, 49% female) or paliperidone ( n = 124, age = 5-18 years, mean age = 15 ± 2 years, 44% female) who had CYP2D6 genotyping performed as part of routine care. CYP2D6 phenotypes were determined based on Clinical Pharmacogenetics Implementation Consortium guidelines and CYP2D6 inhibitors causing phenoconversion. Adverse effects were obtained from a review of the electronic health record, and patients were selected, in part, to enrich non-normal metabolizers. Results: Among risperidone-treated patients, 45% experienced an adverse effect, whereas 36% of paliperidone-treated patients experienced adverse effects. Discontinuation of risperidone due to lack of efficacy was more frequent in the CYP2D6 normal metabolizers and ultrarapid metabolizers compared with intermediate metabolizers (IMs) and phenoconverted poor metabolizers (pPMs) (54.5% vs. 32.7%, p < 0.001). Discontinuation due to weight gain was more common among risperidone- than paliperidone-treated patients (17% vs. 7%, p = 0.011). Among those taking paliperidone, CYP2D6 was associated with discontinuation due to side effects ( p = 0.008), and youth with slower CYP2D6 metabolism (i.e., pPMs and IMs) were more likely to discontinue. Hyperprolactinemia was found in 10% of paliperidone-treated patients and 5% of risperidone-treated patients, and slower CYP2D6 metabolizers required higher risperidone doses to cause hyperprolactinemia ( p = 0.011). Conclusions: CYP2D6 phenotype is associated with discontinuation of risperidone due to lack of efficacy and the dose of risperidone that induced hyperprolactinemia, as well as discontinuation of paliperidone due to adverse effects. Future studies should evaluate exposure-response and toxicity relationships in risperidone- and paliperidone-treated youth.
Keyphrases
- end stage renal disease
- newly diagnosed
- ejection fraction
- chronic kidney disease
- prognostic factors
- healthcare
- clinical trial
- peritoneal dialysis
- physical activity
- weight gain
- gene expression
- chronic pain
- machine learning
- oxidative stress
- open label
- current status
- artificial intelligence
- clinical practice
- birth weight
- affordable care act