Login / Signup

Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells.

Liqun ZhangSantosh K GhoshShrikanth C BasavarajappaJeannine Muller-GrevenJackson PenfieldAnn BrewerParameswaran RamakrishnanMatthias BuckAaron Weinberg
Published in: bioRxiv : the preprint server for biology (2021)
New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19 related deaths and long-term medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell derived host defense peptide that has antiviral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical and biochemical assays confirm that hBD-2 indeed binds to the CoV-2-receptor binding domain (RBD) (K D ∼ 300 nM), preventing it from binding to ACE2 expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSV-G mediated infection, of ACE2 expressing human cells with an IC 50 of 2.4± 0.1 μM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as novel agents to prevent SARS-CoV-2 infection.
Keyphrases