Login / Signup

The evolution of entomopathogeny in nematodes.

V J Trejo-MeléndezJ Ibarra-RendónJorge Contreras-Garduño
Published in: Ecology and evolution (2024)
Understanding how parasites evolved is crucial to understand the host and parasite interaction. The evolution of entomopathogenesis in rhabditid nematodes has traditionally been thought to have occurred twice within the phylum Nematoda: in Steinernematidae and Heterorhabditidae families, which are associated with the entomopathogenic bacteria Xenorhabdus and Photorhabdus , respectively. However, nematodes from other families that are associated with entomopathogenic bacteria have not been considered to meet the criteria for "entomopathogenic nematodes." The evolution of parasitism in nematodes suggests that ecological and evolutionary properties shared by families in the order Rhabditida favor the convergent evolution of the entomopathogenic trait in lineages with diverse lifestyles, such as saprotrophs, phoretic, and necromenic nematodes. For this reason, this paper proposes expanding the term "entomopathogenic nematode" considering the diverse modes of this attribute within Rhabditida. Despite studies are required to test the authenticity of the entomopathogenic trait in the reported species, they are valuable links that represent the early stages of specialized lineages to entomopathogenic lifestyle. An ecological and evolutionary exploration of these nematodes has the potential to deepen our comprehension of the evolution of entomopathogenesis as a convergent trait spanning across the Nematoda.
Keyphrases
  • genome wide
  • human health
  • climate change
  • cardiovascular disease
  • preterm infants
  • palliative care
  • gene expression
  • risk assessment
  • gestational age
  • life cycle