A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes.
Bao-Yi RenRun-Da GuoDao-Kun ZhongChang-Jin OuGang XiongXiang-Hua ZhaoYa-Guang SunMatthew JurowJun KangYi ZhaoSheng-Biao LiLi-Xin YouLin-Wang WangYi LiuKaiwei HuangPublished in: Inorganic chemistry (2017)
To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy)3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy)3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A-1, 36.3 lm W-1, and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy)3-based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A-1, 22.1 lm W-1, and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m-2. The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching, facilitating charge-carrier injection/transport, and improving the amorphous stability of iridium(III)-based phosphorescent emitters.
Keyphrases
- light emitting
- energy transfer
- highly efficient
- drug delivery
- solid state
- room temperature
- cancer therapy
- ionic liquid
- transition metal
- ultrasound guided
- signaling pathway
- nk cells
- quantum dots
- metal organic framework
- magnetic resonance imaging
- wastewater treatment
- computed tomography
- water soluble
- single cell
- mass spectrometry